Year 6 Mathematics Yearly Overview

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Week 1	Unit 1 Place value	Unit 5 Division				
Week 2						
Week 3	Unit 2 Algebra and Sequences	Unit 6 Fractions, Decimals, Percentages				
Week 4	Unit 3 Addition and	Unit 7 Geometry and Area				
Week 5	Subtraction					
		Unit 8 Statistics				
Week 6	Unit 4 Multiplication	Assess and review week		Assess and review week		Assess and review week

Year 6 Expectations – Sequence of Learning

<u>Autumn 1 – 6 weeks</u>

Starters	
• Identif	y, represent and estimate numbers on a number line within the range 0 to 10,000,000
	the number line has ten demarcations
 Count 	forwards or backwards in steps of powers of 10 from any number up to 10,000,000
	nise that the numbers in calculations can be reordered to make calculating more efficient
-	-65 + 39 becomes 54 + 39 – 65 and use this strategy where appropriate
-	nise and solve calculations that involve known or related facts e.g. 0.62 + 0.38 using
-	edge of $62 + 38 = 100$
	ly whole numbers and numbers with up to three decimal places by 10, 100 or 1,000
•	whole numbers by 10, 100 or 1,000 and numbers with up to two decimal places by 10, 100 or 1,000 and
	ers with up to one decimal place by 100
•	ly H00 \times T0 and Th000 \times T0 using knowledge of factorising and tables facts e.g. 600 \times 40 4 \times 100 \times 10 = 24,000
•	ly HT0 \times U using a partitioning strategy
	nowledge of place value and multiplication facts to multiply $0.0h \times U$
•	ly a 0.th number by a one-digit number using a partitioning strategy
	y common multiples of two numbers
	ad and write standard units of length, mass, volume and time using decimal notation to
	decimal places
	ue to complete and interpret information in a variety of sorting diagrams (including sorting
• •	ties of numbers and shapes
	are/classify geometric shapes based on the properties and sizes
	r and Place Value and Decimals
Weeks 1 Lesson	Lesson Focus
Lesson	
	Identify and represent numbers up to 10,000,000 using place value counters and a place value chart
1	
	Partition a seven-digit number into millions, hundred thousands, ten thousands,
	thousands, hundreds, tens and ones
	Identify and represent numbers with up to three decimal places using place value
2	counters and a place value chart
	Partition a number with up to three decimal places into tens, ones, tenths, hundredths
	and thousandths
3	Compare and order numbers up to 10,000,000
-	Compare and order numbers with up to three decimal places
4	Round any number up to 10,000,000 to the nearest 10, 100, 1,000, 10,000, 100,000 or
•	1,000,000
	Round decimals with three decimal places to the nearest whole number
5	e.g. 327.702 rounds to 328
5	Round decimals with three decimal places to the nearest tenth
	e.g. 327.702 rounds to 327.7
_	Find 1, 10, 100, 1,000, 10,000 or 100,000 more/less than a given number up to 10,000,000
6	including crossing any boundaries
	Find 0.001 more/less than a given number including crossing any boundaries
	Count forwards or backwards in steps of powers of 10 from any number up to
7	10,000,000
Algebra	and Sequences
Weeks 2	•
Lesson	Lesson Focus
	Understand and use algebraic convention e.g. $6 \times I = 6I$ (because it is $I + I + I + I + I$)
1	and $a + a = 2a$
	Describe simple rules using words e.g. perimeter of a regular hexagon is one length
	multiplied by 6
	Write simple rules using symbols e.g. $p = 1 \times 6$ where p is the perimeter of a regular
	hexagon and I is the length of one side

© Lancashire Mathematics Team LPDS (2021)

Express a given one-step word problem algebraically e.g. I think of a number and subtract 15. My answer is 12. What is my number? a -15 = 12 Express a given two-step word problem algebraically e.g. Megan has two boxes. There are m counters in each box. She puts all her counters together in a pile and then removes five of them. Write an expression for the number of counters that are in the pile now 2m - 5 or m + m - 5 2 Understand and use algebraic convention for combining like terms e.g. a + 4 + a + 8 = 2a + 12 3 Substitute values for variables (letters) in simple formulae e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + 7 = 1 + 2. the missing numbers to complete an equation with addition and/or subtraction e.g. 10 + 7 = 1 + 2. the missing numbers to a collect an equation with addition and/or division e.g. 7 × 6 = 18 × 1th emissing numbers to complete an equation with multiplication and/or division e.g. 7 × 6 = 18 × 1th emissing numbers to the alget of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than the missing number on the right of the = because 18 is 3 times the term plus 1 Can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position term/ where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position term/ where the relationship is a single step e.g. the value is 3 times the term position to identify the value of a given value Describe the relationship between the values in a linear sequence and their position term/ where the relati	1	
Express a given two-step word problem algebraically e.g. Megan has two boxes. There are m counters in each box. She puts all her counters together in a pile and then removes five of them. Write an expression for the number of counters that are in the pile now 2m - 5 or m + m - 5 2 Understand and use algebraic convention for combining like terms e.g. a + 4 + a + 8 = 2a + 12 3 Find the value of a variable (letters) in simple formulae e.g. 3t + 4 = 7 where t is 5 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 4 Express a given two avaiable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 4 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7x 6 = 18 x ! the missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 x ! the missing number on the left of the = sign is 3 times greater than 6 5 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! the missing number on the left of the = sign is 3 times greater than 6 6 Generate a linear number sequence when given the rule for each term pus 1 can be represented as 3n + 1 where n is the term number 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 7 Describe the rule for a linear sequence		Express a given one-step word problem algebraically e.g. I think of a number and subtract 15. My answer is 12. What is my number $2 = 15 = 12$.
m counters in each box. She puts all her counters together in a pile and then removes five of them. Write an expression for the number of counters that are in the pile now 2m - 5 or m + m - 5 2 Understand and use algebraic convention for combining like terms e.g. a + 4 + a + 8 = 2a + 12 3 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = ? where t is 5 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 4 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 9 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 × 6 = 18 × ! 9 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! 9 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! 9 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! 9 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term)		
of them. Write an expression for the number of counters that are in the pile now 2m - 5 or m + m - 5 2 Understand and use algebraic convention for combining like terms e.g. a + 4 + a + 8 = 2a + 12 3 Substitute values for variables (letters) in simple formula e.g. 3t + 4 = ? where t is 5 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + 7 = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 × 6 = 18 × 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relead tonship between the values in a linear sequence and their p		
or m + m - 5 2 Understand and use algebraic convention for combining like terms 2 e.g. a + 4 + a + 8 = 2a + 12 3 Substitute values for variables (letters) in simple formulae e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + 7 = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + 7 = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 x 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear seq		
2 Understand and use algebraic convention for combining like terms e.g. a + 4 + a + 8 = 2a + 12 Substitute values for variables (letters) in simple formulae e.g. 3t + 4 = ? where t is 5 3 Find the value of a variable (letter) from a given formulae e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formulae e.g. 3t + 4 = 16 Find the value of a variable (letter) from a given formulae e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 7 × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the values 18 is 3 times greater than 6 Generate a linear number sequence algebraically e.g. 3 times the term puts 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 The relationship between the values in a linear sequence and their position to identify the value of a given t		
 e.g. a + 4 + a + 8 = 2a + 12 Substitute values for variables (letters) in simple formula e.g. 3t + 4 = 7 where t is 5 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = 1 + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the values is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the relationship is a single step e.g. the value is 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position to identify the term form a given value Describe the relationship between the values in a linear sequence and their position to identify the term w		
Substitute values for variables (letters) in simple formulae e.g. 3t + 4 = 7 where t is 5 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + 7 = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + 7 = 1 + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 Describe the relationship between the alges in a linear sequence and their position (term) where ne rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship is two stops e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relation	2	
3 Find the value of a variable (letter) from a given formula e.g. $3t + 4 = 16$ Find pairs of missing numbers to complete an equation where a total is given e.g. $2q + w = 10$ 4 Find the value of a variable (letter) from a given formula e.g. $3t + 4 = 16$ Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. $10 + 7 = 1 + 2$ Describe the relationship between the pairs of numbers used to solve the equation e.g. $10 + 7 = 1 + 2$ the missing numbers have a difference of 8 which is the same difference between 10 and 2 5 Describe the relationship between the pairs of numbers used to solve the equation e.g. $? \times 6 = 18 \times 1$ 6 Generate a linear number sequence when given the rule for ach term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 6 Generate a linear number sequence algebraically e.g. 3 times the term plus 1 can be represented as $3n + 1$ where n is the term number 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 can be represented as $n + 1$ where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the value $g.g. 3$ times the term plus 1 can be represented as $3n + 1$ where n is the term number 7 Describe the relationship between the values in a linear sequence and thei		
 Find pairs of missing numbers to complete an equation where a total is given e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = 1 + 2 the missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers Describe the relationship is a signes trep e.g. the value for a complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the relationship is a single step e.g. the value is 3 times the term Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear se		
 e.g. 2g + w = 10 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = ! + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = ! + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! Describe the relationship between the values in a linear squeare than 6 Generate a linear number sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where in a linear sequence alg	3	
 Find the value of a variable (letter) from a given formula e.g. 3t + 4 = 16 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = 1 + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = 1 + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × 1 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 bescribe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × 1 the missing number on the left of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than 6 Generate a linear number sequence when given the rule cach term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value of a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a li		
 Find pairs of missing numbers to complete an equation with addition and/or subtraction e.g. 10 + ? = ! + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = ! + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 x ! the missing number on the left of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule; multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule		
 e.g. 10 + ? = ! + 2 Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = ! + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the values 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the term form a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequenc		
 ⁴ Describe the relationship between the pairs of numbers used to solve the equation e.g. 10 + ? = ! + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the values in 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship is a single step e.g. the value is 3 times the term Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position to identify the value of a given term Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be r		
 e.g. 10 + ? = ! + 2 the missing numbers have a difference of 8 which is the same difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? x 6 = 18 × ! Describe the relationship between the values 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addi	4	-
difference between 10 and 2 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation 		
 Find pairs of missing numbers to complete an equation with multiplication and/or division e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! the missing number on the left of the = sign is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 Lesson Lesson Focus Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate Add w		
 e.g. ? × 6 = 18 × ! Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! the missing number on the left of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 Lesson Focus Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9		
5 Describe the relationship between the pairs of numbers used to solve the equation e.g. ? × 6 = 18 × ! the missing number on the left of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than 6 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 7 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 9 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate 8 Recognise calculations that require counting on or back mentally, bridging efficiently		
e.g. ? × 6 = 18 × ! the missing number on the left of the = sign is 3 times greater than the missing number on the right of the = because 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 Lesson Lesson Focus Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this		
missing number on the right of the = because 18 is 3 times greater than 6 Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Pescribe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a li	5	
Generate a linear number sequence when given the rule for each term e.g. complete the sequence using the rule: multiply the term by 3 and subtract 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Parameter Pescribe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the tarm from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Additionard Subtraction Weeks 4 and 5 Lesson Lesson Focus Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate 2 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes		
6 sequence using the rule: multiply the term by 3 and subtract 1 7 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the values in a linear sequence and their position to identify the term from a given value 9 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the term from a given value 9 Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate 2 Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0,7 + 0.56 becomes 0,7 + 0,3 + 0.26 and use this strategy where appropriate		
b Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 7 Describe the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position (term) where the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the values in a linear sequence and their position to identify the term from a given value 9 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the term from a given value 9 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Iseson Focus Iseson Focus 1 Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate 2		
Pescribe the full for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Pescribe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term plus 1 Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 Lesson Lesson Focus 2 Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate 3 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate 4 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4	6	
Pescribe the relationship between the values in a linear sequence and their position (term) where the relationship is a single step e.g. the value is 3 times the term Pescribe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 Lesson Lesson Focus 1 Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate 2 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate 3 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate 4 Add whole numbers up to 10,000,000 5 Add whole numbers up to 10,000,000	0	
7(term) where the relationship is a single step e.g. the value is 3 times the term Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number8Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditor and Subtraction Weeks 4 and 51Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Subtract whole numbers up to 10,000,0006Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.829 <td< td=""><td></td><td>represented as 3n + 1 where n is the term number</td></td<>		represented as 3n + 1 where n is the term number
7Describe the relationship between the values in a linear sequence and their position (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number8Use the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the value of a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditionAubtraction veeks 4 and 51Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 8.84.2 - 58.829		Describe the relationship between the values in a linear sequence and their position
1 (term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number 8 Use the relationship between the values in a linear sequence and their position to identify the value of a given term 8 Use the relationship between the values in a linear sequence and their position to identify the term from a given value 9 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term number Addition and Subtraction Weeks 4 and 5 1 Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate 2 Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate 3 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate 4 Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line) 5 Add whole numbers up to 10,000,000 6 Subtract whole numbers up to 10,000,000 7 Choose an appropriate strategy to solve a calculation based upon the num		(term) where the relationship is a single step e.g. the value is 3 times the term
(term) where the relationship is two steps e.g. the value is 3 times the term plus 1 Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberUse the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditional additional a	7	Describe the relationship between the values in a linear sequence and their position
represented as 3n + 1 where n is the term numberUse the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditionand SubtractionWeeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	1	(term) where the relationship is two steps e.g. the value is 3 times the term plus 1
BUse the relationship between the values in a linear sequence and their position to identify the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditorSubtractionWeeks + and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate3Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0,7 + 0.56 becomes 0,7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5,6 + 3.9 becomes 5,6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2,65 + 354,682 + 64,7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834,2 - 58,8297Choose an appropriate strategy to solve a calculation based upon the numbers involved		Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be
8the value of a given term Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditionaryAdditionaryWeeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 		represented as 3n + 1 where n is the term number
8Use the relationship between the values in a linear sequence and their position to identify the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditionandAdditionandWeeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved		Use the relationship between the values in a linear sequence and their position to identify
8the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAddition and Subtraction Weeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved		the value of a given term
the term from a given value Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be represented as 3n + 1 where n is the term numberAdditionandand Subtraction Weeks 4 and 5Lesson Lesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	0	Use the relationship between the values in a linear sequence and their position to identify
represented as 3n + 1 where n is the term numberAddition and SubtractionWeeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	0	the term from a given value
Addition and Subtraction Weeks 4 and 5 Lesson Focus 1 Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate 2 Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate 3 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate 4 Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line) 5 Add whole numbers up to 10,000,000 6 Subtract whole numbers up to 10,000,000 3 Subtract whole numbers up to 10,000,000 4 Choose an appropriate strategy to solve a calculation based upon the numbers involved		Describe the rule for a linear sequence algebraically e.g. 3 times the term plus 1 can be
Weeks 4 and 5LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved		represented as 3n + 1 where n is the term number
LessonLesson Focus1Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	Additio	n and Subtraction
1Recognise calculations that require mental partitioning e.g. 6,584 - 2,360 or 873 + 350 and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	Weeks 4	and 5
1and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	Lesson	Lesson Focus
1and use this strategy where appropriate2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	1	Recognise calculations that require mental partitioning e.g. 6,584 – 2,360 or 873 + 350
2Recognise calculations that require counting on or back mentally, bridging efficiently e.g. 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate3Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	I	
 0.7 + 0.56 becomes 0.7 + 0.3 + 0.26 and use this strategy where appropriate Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line) Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 24 Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.829 Choose an appropriate strategy to solve a calculation based upon the numbers involved 	2	
 Recognise calculations that require a mental compensation method e.g. 5.6 + 3.9 becomes 5.6 + 4 - 0.1 and use this strategy where appropriate Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line) Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 24 Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.829 Choose an appropriate strategy to solve a calculation based upon the numbers involved 	2	
 ³ becomes 5.6 + 4 - 0.1 and use this strategy where appropriate ⁴ Recognise calculations that require counting on mentally to find the difference e.g. 4.1 - 3.46 and use this strategy where appropriate (This should be supported by a number line) ⁵ Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 24 ⁶ Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.829 ⁷ Choose an appropriate strategy to solve a calculation based upon the numbers involved 		
4Recognise calculations that require counting on mentally to find the difference e.g. 4.1 – 3.46 and use this strategy where appropriate (This should be supported by a number line)5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	3	
 3.46 and use this strategy where appropriate (This should be supported by a number line) Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 24 Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.829 Choose an appropriate strategy to solve a calculation based upon the numbers involved 		
5Add whole numbers up to 10,000,000 Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	4	
5Add numbers with up to three decimal places e.g. 2.65 + 354.682 + 64.7 + 246Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 - 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved		
6 Subtract whole numbers up to 10,000,000 Subtract numbers with up to three decimal places e.g. 834.2 – 58.829 Choose an appropriate strategy to solve a calculation based upon the numbers involved	5	•
6Subtract numbers with up to three decimal places e.g. 834.2 – 58.8297Choose an appropriate strategy to solve a calculation based upon the numbers involved	6	
7 Choose an appropriate strategy to solve a calculation based upon the numbers involved		·
	7	
Trecail a Known fact, calculate mentally, use a jotting, whiten method)		
		(recail a known fact, calculate mentally, use a jotting, written method)

Multiplication Weeks 5 and 6		
Lesson	Lesson Focus	
1	Use partitioning to double any number, including decimals to three decimal places	
2	Use compensation strategy to multiply U.9 \times U Use compensation strategy to multiply U.99 \times U	
3	Multiply a number with one decimal place by a single digit e.g. 34.3×8 Multiply a number with two decimal places by a single digit e.g. 45.38×7	
4	Multiply whole numbers up to four digits by a one-digit number	
5	Multiply two-digit whole number by a two-digit whole number using the formal written method of long multiplication	
6	Multiply multi-digit numbers up to three digits by a two-digit whole number using the formal written method of long multiplication	
7	Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)	
Learning Check Up To This Point		

<u>Autumn 2 – 5 weeks</u>

Starters				
	owledge of place value and multiplication facts to divide related larger numbers			
0	$300 \div 9 = 700 \text{ and } 6300 \div 90 = 70$			
digits a	artitioning to halve any number, including decimals to three decimal places where all the are even e.g. halve 24.682			
Know	that: $\frac{3}{5}$ is 0.6 or 60%; $\frac{1}{3}$ is approximately 0.33 or 33.3%; $\frac{2}{3}$ is approximately 0.66 or 66.6%; $\frac{1}{8}$ is			
	or 12.5%			
	e fact that $\frac{1}{8}$ is 0.125 or 12.5% to derive decimal and percentage equivalents for $\frac{3}{8}$, $\frac{5}{8}$ and $\frac{7}{8}$			
e.g. ¹ / ₈ i	s 0.125 so $\frac{3}{8}$ is 0.125 x 3 = 0.375			
• Calcula	ate missing angles on a straight line			
Division				
Weeks 1	and 2			
Lesson	Lesson Focus			
1	Use partitioning to halve any number, including decimals to three decimal places			
2	Divide a 4-digit number by a 1-digit number			
3	Divide a 3-digit number by a 2-digit number			
	Divide a 3-digit number by a 2-digit number			
4	Convert between different units of time where long division is required e.g. how many days is 356 hours?			
5	Divide a 3-digit number by a 2-digit number and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context			
6	Divide a four-digit number by a one-digit number using a partitioning strategy e.g. 1542 \div 6 becomes (1200 \div 6) + (300 \div 6) + (42 \div 6)			
7	Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)			
Fraction	s, Decimals and Percentages			
Weeks 2				
Lesson	Lesson Focus			
1	Identify common multiples of two numbers Identify common multiples of three or more numbers			
2	Understand and use the term 'simplify' and use common factors to simplify fractions			
3	Use common multiples to express fractions in the same denomination Compare two fractions or mixed numbers by using common multiples to express the fractions in the same denomination			
4	Add and subtract two fractions by converting both into fractions with a common denominator			

	Understand and calculate fraction and decimal equivalence by expressing fractions in				
5	tenths or hundredths e.g. $\frac{1}{4} = \frac{25}{100} = 0.25$				
	Understand and calculate fraction and percentage equivalence by expressing fractions in				
	hundredths $\frac{2}{5} = \frac{40}{100} = 40\%$				
6	Find fractions of amounts				
	Find 10% of an amount by dividing it by 10				
7	Find 1% of an amount by dividing by 100 or by dividing 10% of the amount by 10				
	Find 5% of an amount by dividing 10% by 2 (finding half of 10%)				
8	Find 15%, 35%, 45%, 55%, 65%, 85% of an amount by adding multiples of 10% of the				
0	amount to 5% of the amount				
Geomet	ry Area				
Weeks 4	and 5				
Lesson	Lesson Focus				
1	Draw given angles, and measure them in degrees (°)				
2	Complete a given shape by drawing one angle of a given size and one side of a given				
	length				
3	Calculate missing angles where two straight lines cross and one angle is given				
	Recognise that vertically opposite angles are equal Find missing angles in triangles where two angles are given				
4					
5	Find missing angles in isosceles triangles where one angle is given Compare/classify geometric shapes based on the properties and sizes				
5	Derive the area of a parallelogram by relating it to a rectangle with the same width and				
	vertical height				
6	Calculate the area of parallelograms				
	Know the formulae for the area of rectangles (including squares) is length \times width and				
	how this relates to the area of parallelograms as base \times height				
7	Know the formulae for the area of rectangles (including squares) is length $ imes$ width and				
1	how this relates to the area of triangles as $\frac{1}{2}$ (base $ imes$ height)				
Statistic	S S S S S S S S S S S S S S S S S S S				
Week 5					
Lesson	Lesson Focus				
	Interpret pie charts by directly comparing the size of the segments				
1	Identify halves, quarters and thirds of a circle including in different orientations				
	Relate the proportion (including percentage) of the circle to the proportion of the total where the segments are halves, thirds and quarters				
	Identify sixths and eighths of a circle, including different orientations, by comparing them				
	to halves, quarters and thirds				
2	Relate the proportion of the circle to the proportion of the total where the segments are				
	sixths and eighths				
	Estimate proportions of the circle using fractions and percentages				
	Solve comparison, sum and difference problems using information presented in all types				
3	of graph				
J	Understand and use approximate equivalences between miles and kilometres when given				
	the conversion graph or conversion fact that 5 miles ≈ 8km Learning Check Up To This Point				